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The effect  of non-Newtonian Prandtl  number  on the distr ibution of r e s i s t ance  to heat t r an s f e r  
is examined.  Two new analogies between heat and momentum t r a n s f e r  a r e  developed, one of 
which is shown, by compar i son  with exper iment ,  to be supe r io r  to another more  complex and 
recent ly  published analogy-type express ion .  It is concluded that more  accura te  information 
is needed on conditions near  the wall  before  re l iable  charac te r iza t ion  of heat t r an s f e r  can be 
made in such s y s t em s .  

The complexi t ies  of r igorous  analysis  of this subject  have so f a r  proved prohibit ive,  but useful r e -  
suits have been obtained on the bas i s  of analogies between the p r o c e s s e s  of heat and momentum t rans fe r ,  
as f i r s t  proposed by Osborne Reynolds in 1874. Many of the re f inements  in the theory of analogy for  New- 
tonian ma te r i a l s  s ince that t ime a re  reviewed by Knudsen and Katz [1]. Attention will here  be mainly  con- 
fined to two new analogies and one recen t  analogy between heat and momentum t r ans f e r  for non-Newtonian 
fluids in tubes. 

Analyses  by Metzner and Fr iend  [2, 3, 4] refine and extend an ea r l i e r  development  by Reichardt  which 
defined the genera l  f o rm of a solution allowing for  slight but unspecified turbulence close to the wall.  The 
pure ly  viscous non-Newtonian express ion  [4] was r e s t r i c t ed  to conditions of effect ively i so thermal  heat 
t r a n s f e r  and, according to Pe t e r sen  and Chr is t iansen [5], yields predict ions which deviate increas ingly  
f rom exper imen ta l  values  with increas ingly  non-Newtonian behavior .  The p recedure  presented  by Pe te r sen  
and Chr is t iansen  [5], however,  is highly complex both in formulat ion and application. 

The next sect ion explains why assumpt ions  regard ing  flow conditions in the vicinity of the wall are of 
c ruc ia l  impor tance  to the success  or  otherwise  of h e a t - t r a n s f e r  re la t ionships  based on analogies in the case  
of mos t  nen-Newtonian ma te r i a l s .  Emphas is  will be on power- law non-Newtonian substances  fo r  which, in 
tube flow 

�9 ,~ = K ( - ~ - r  / " d "  ~" (11 

The genera l  rheology and charac te r i za t ion  of these and other  non-Newtonian fluids has been descr ibed 
by Skelland [6]. 

The D i s t r i b u t i o n  of  R e s i s t a n c e  to H e a t  T r a n s f e r  in 

T u r b u l e n t  F l o w  

The h e a t - t r a n s f e r  coefficient  for  a power- law fluid in turbulent flow through a round tube will be a 
function of the va r i ab les  l isted below (symbols  a re  defined at the end of the ar t ic le) :  

h =  f(D, V, t), %, k, K, n). 

Dimensional  analysis  gives the following resul t  for  a given n: 

(2) 

hD f~[D~-~p %K ( V ) ~ - ~  1 ~-= ,--~- 

*The publ i sher  thanks the author for  providing the original  manuscr ip t .  
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o r  

Nu = / ( R e  +, Pr+). (4) 

The radial  heat flux at y may be written as 

d(cvpT) 
q = - - ( a t  + eH) dy ' 

where e H is an eddy thermal  diffusivity. For  regions of small  y near  the wall q ~ qw, 

k o ( D ) . t  d(  pr) + -s r au 

and 

(5) 

o r  

I = - -  ~ q- (K/p)(V/D) n-x j  Pq~ cpp dy " (6) 

A dimensionless temperature  is commonly defined as 

T+ = (T~ - -  T) p%u* . 
q~ 

�9 ". dT = qwdT+ 
pci~t t ,  ' 

(7) 

and if the dimensionless distance f rom the wall is given by 

y+ y~(u*W" p 
g (8) 

where u* is the friction velocity, 4"rwgc/p, then 

@ =  Kdg + 
(9) 

Combination of Eqs. (6), (7), and (9) yields the dimensionless expression 

1 = ~ -b (K/p)~/-D) n - 1  n . . . .  D u* ] dy + (lo) 

Consider now some par t icular  point close enough to the wall for  e H to be effectively zero  for the case 
of two fluid sys tems with Prandtl  numbers N ~ r  I and N + p r  2. Suppose this difference in N~r is due solely to 
differences in consistency index, K, the quantities D, V, y, n, Cp, k, and p / K  having respect ively  the same 

= N + Equation (10) may be written for  each sys tem,  and taking values in the two sys tems,  so that N~e 1 Re 2. 
rat ios,  

Pr+ { u; ~n-1 (dT+/dg+), (11) 
1 = ~ \ - ~ ]  (dT+/dy+) ' �9 

An approximate relation between Fanning friction factor  and Reynolds number in turbulent f low is 
given by Dodge and Metzner [7]; it takes the following form for  power-taw fluids: 

x w _ u . 5.103~CnRe+~10~, (12) 
[ = pV2/2 (C~Re+) ~ '  

where ce and /? are functions of n only [6, 7]. The definitions of u* and f show that u* = V4i-'/~ but n, V, and 
N~e have respect ively the same values in the two sys tems,  so that u~' = u~'. Equation (11) accordingly be-  
comes 

(dT+ /dy+)a Pr+ 
= - -  (la) 

(dT+/dy+)l pr+ " 

This shows that, for given values of Reynolds number and n, increasing the non-Newtonian Prandtl  
number leads to an equivalent increase in the dimensionless tempera ture  gradient in the wall region (where 
e H --* 0, q ~ qw)" This, of course ,  corresponds to locating more  and more of the major  res is tance  to heat 
t ransfer  within the sublayers  near  the wall with increasing N~r.  Non-Newtonian Prandtl  numbers are in 
fact high, so that assumptions concerning e H near the wall, the nature and thickness of the laminar  sub- 
layer,  and other quantities in the wall region become of cr i t ical  importance in the analysis of turbulent 
non-Newtonian heat t ransfer .  Relationships based upon several  different assumptions about conditions in 
the vicinity of the wall will now be considered.  
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A n a l o g y  A s s u m i n g  a L a m i n a r  S u b l a y e r  and a T u r b u l e n t  C o r e  

A T a y l o r - P r a n d t l  type of analysis will here be extended to non-Newtonian fluids for which the shea r -  
ing behavior is described by the power law. The laminar  sublayer  adjacent to the wall has thickness 6 L 
and the tempera ture  and velocity in the x direction at y = 6 L are T L and u L. 

Consider  f i rs t  the t rans fe r  of momentum and heat in the laminar  sublayer,  which is supposed to be 
thin enough to assume linear distributions of velocity and temperature .  

:,<(,r , < , 4 ,  

dT (T L --  T~) q ~  = - - / ~ - -  = - -  k , g ~ ~L- (15) 
dy 6L 

f rom which 

qw _ k (T L -  Tw) (16) 
1--n n x w 6 L u z K 

Trans fe r  in the turbulent core  (y > 5L) is desertbed byReyno lds '  analogy, in which aggregates of fluid 
travel,  on the average,  back and forth between the edge of the laminar  sublayer  (u = UL, T = TL) and loca-  
tions where velocity and tempera ture  have bulk average values (u = V, T = Tm). These fluid aggregates 
c a r r y  the momentum and tempera ture  corresponding to the location at which the aggregates f i rs t  attain 
identity. Thus for  a eons tant -proper ty  fluid and an average aggregate mass m: momentum t ransfer  to- 
wards the sublayer  = m(V - UL); heat t ransfer  away f rom the subtayer  = - m e p ( T  m - TL) or  

q - -  cp (T,~ - -  TL) 

T, w V - -  U L 

Equations (16) and (17) both apply at y = 6 L. Solving Eq. 
- Tm) and adding the resul ts ,  

qw [ 5~ -~ u[ c,Ii  
cv(r w - T i n ) =  - ~  [ le 

o r  

Ns t = qw 
pVcp (Tw --  Tin) 1 q- 

Equation (18) is readily rea r ranged  to 

(17) 

(16) for (T w -  TL) and Eq. (17) for (T L 

- +  V - - u L ]  

f12 
l--n n (18) 6 L uLc,K uL 

Vk V 

s t  = f/2 

u L D - 11 

Using Clapp's (8) assumption that at the edge of the laminar sublayer 

u + = % / u *  = ( y + ) , / n  = 5; 

then since u* = VgT~ 

~,~ = 5v V ~ .  

(19) 

and f r o m E q .  (8) f o r y  = 5 L 

Combination of Eqs. (19) to (21) gives 

where NNu , N~e , N~r , 
Eq. 

(20) 

8L=5 ( K .1 TM (21) 
( v Y ~ )  ~-n ~ / 

Nu f/2 
S t - - - - - -  

Re+Pr + n-1 , 
1 + 5 e + P r + - - I  

(22) 

and f are  defined by Eqs. (3), (4), and (12). The fr ict ion factor  f is obtainable f rom 
(12). (Other means for evaluating f when CnN~e > 105 are  given by Skelland [6].) 
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A l t e r n a t i v e  A n a l o g y  A s s u m i n g  a L a m i n a r  S u b l a y e r  a n d  

a T u r b u l e n t  C o r e  

The quantities UL/V and D/e L in Eq. (19) may be est imated in a different  way which does not require  
Clapp's assumption concerning the thickness of the laminar  sublayer ,  namely y~  = 5 n. This involves 
derivation of an express ion  for  turbulent veloci ty distribution in the tube as follows. Equation (12) may be 
expanded to give 

Ttv = ( 2~-~l ) pV2-fg2-n) (--~-- ) R-fJn= p (u*)2, 

where  

8"-'K( 3n-4- 1 ,~n= 
Vl = ~, 4n ] K/Cn' (23) 

Rearranging and eliminating the mean veloci ty V with the aid of the maximum veloci ty by putting V = 0.817 
�9 urn (Bogue and Metzner [9]), 

1 

u - - - ~ - - - - l ~  (2~ )2" t~ (2 -n ) [  u* 0.817 Rn(u*)2-nP] 2-f~(2-n)" ' 1  (24) 

Next, to quote Schlichting [10, line 20], "It is now natural  to assume that this equation is valid for  any wall 
distance y, and not only for  the pipe axis (wall distance y = 1~). Hence we obtain f rom Eq. (24)" 

l 13 
u l (2~n+l)2--$(2-n)[yn(U*)z--np] 2-f~(2-n) " (25) 

u* 0.817 71 

and taking the rat io of Eqs. (25) to (24), 
tin 

Um 

This express ion  was f i r s t  der ived by Skelland [11] using a different  method, and was shown to be in 
good agreement  with exper iment .  For  Newtonian fluids n = 1.0, fl = 0.25, and Eq. (26) reduces  to the well 
known Prandt l  one-seventh power law. 

Equation (26) is man}pulated to give the following, af ter  sett ing It = D/2, u m = V/0.817, u - - u L , Y  = 5L: 
1t(2--n)--~ 

D 0,8 u L (27) 
eL = 2 

Application of Eq. (12) to the laminar  sublayer  yields 

o~ ( u z, y', 
,%, = -~- pW (C,, Re+) -I~ = K ~, eL ] 

uT" = ~K pV~ ~ (C. Re+)'-~6~, D"V ~-'~ p 
1 

"d- U 
D \ aVl I ~, V I 

Combining Eqs. (23), (27), and (28) and solving for UL/V 
1 

Equation (27) is inser ted in Eq. (19) to obtain 
f/2 

St  - -  2(~--I) 

UL I~(2--n)--2 13n -- 

(2s) 

(29) 

(3o) 

where UL/V is given by Eq. (29). 
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TABLE 1: Comparison between Experimental  NNu and Values Cal- 
culated f rom Equations 22, 30, and 40 for Tubes 

Nusselt qumber 
Clapp 

Pr+ exper" equation _ Mar tine lli,[equat ion 
CnRe+ [imental Cn n 22 Eq. 40: [ 30 

[(Clapp, [8] f~' = 1.0 | 

5,145 98,3 0,733 119,4 93,3 86,8 34,1 
9,340 101,6 0,698 213,5 203,0 172,5 76,7 

12,070 95,0 0,719 272,0 249,0 218,0 91,7 
14,770 69,6 0,744 286,8 286,0 236,2 107,O 
23,000 61,3 0,786 431,5 407,0 345,8 158,4 

A n a l o g y  A s s u m i n g  a L a m i n a r  S u b l a y e r ,  a B u f f e r  L a y e r ,  

a n d  a T u r b u l e n t  C o r e  

An extension of Martinell i 's  analogy was per formed by Clapp [8] for power- law non-Newtonian fluids 
using the following Martinelli assumptions:  

T T w 

9 P 
q q,,, 

pCp OCp 

t~ "dig n 

dy ' 

dT 
k +~.)~, 

where the eddy diffusivit[es of heat and momentum are related by 

Clapp [8] developed the following expressions for  velocity distribution in the tube. 

Laminar  sublayer :  
u + = (y+),/n, 0 .< y+ ~ 5 n . 

(31) 

(32) 

(33) 

(34) 

Buffer layer:  

u+= 5._0_0 lny+ 3,05 ' 5 . ~ y  +~y2+ " 
n 

(38) 

Turbulent core: 

u+ - 2.78 lny + + 3.__88, y+ > y + .  
n n 

(36) 

The laminar  sublayer  was assumed to extend to y+ = 5n; y~" is located at the intersection of Eqs. 
(35) and (36). These relationships were used to obtain the temperature  profile in the tube, as shown be-  
tow. 

Laminar  sublayer :  

Buffer layer:  

T~ - - T  = Q~ T~'cz'~2" { "vw ~-,/n 0 > y+ < 5". 
k ~ m  + ] ' 

y+ n--i 

T L - - T = Q w ! + [  "CwCp~'\n---~k [xWK ]~l/n(Y+)n 
- -  ]- ,  

+ nY~ + _ n(5)n-1 dy +, 
5 

5 n < y+ < y+.  

(37) 

(3s) 

Turbulent core: 

T~ --  T = Q~ In c~ Re + (]flf]2)~-~ 4n 
8g+ �9 ' 

y+ ~ y~- , (39) 
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Fig. 1. Compar i son  between exper imenta l  Nussel t  numbers  and 
values calculated f rom Eqs.  (22), (30), and (40) for  tubes.  (0.69 
< n < 0.79; 61 < P r + / C n  < 104)i 1) exper imenta l ;  2) Eq. (22); 3) 
Eq. (40); 4 ) E q .  (30). 

Fig. 2. Radial  t e m p e r a t u r e  dis tr ibut ion in a tube for  turbulent 
f lowofpower - lawnon-Newton ianf lu tds  (Eqs. (37), (38), and (39)). 
NRe+ = 104; n = 0.5; ~ '  = 1.0: 1) Npr+  = 1; 2) Npr+  = 10; 3) 
N p r +  = 100. 

where  Qw = qw A2 'CppU*; G = 2.78. These  equations reduce to those der ived by Marttnell[  for  h tgh-Prand t l -  
number  Newtonian fluids when n = 1.0. 

The cor responding  Stanton number  is 

~' ]/-f72 ( T~-- To ) (40) 
S t =  Fa+ Fb + Fc T -~---T-Tm , 

where  

F,~---- T~,cp'~___.__~' ( '~w l - v "  . 
k \ K y  § ! ' 

i " - -  
Fb = nk l/,~(g+) ,, ng+ 

J I_ %%g~" + 5 

F= = G in C,, Re + (]/f72)=-" 
n 

- -  - -  n (5) ~-1]- '@+; 

4 ~ 

s y +  �9 

Compar i sons  between Nussel t  numbers  calculated f r o m  Eqs.  (22), (30), and (40) and exper imenta l  
values appear  in Table 1. (Calculations a re  by slide rule and the re fore  approximate . )  Resul ts  a re  also 
plotted in Fig. 1, which contains s ix additional exper imenta l  points f r o m  Clapp [8]. 

It is in teres t ing to note that the Least sophis t icated analysis  culminat ing in Eq. (22) gives r e su l t s  
which, although low, a re  substant ia l ly  c lo se r  to the exper imenta l  m e a s u r e m e n t s  than those obtained e i ther  
by  the m o r e  complicated Eq. (30) or  by the s t i l l  more  complex Mar t tne l l i - type  t r ea tmen t  leading to Eq. (40). 

This  is consis tent  with cu r r en t  postulates  which rep lace  the hypothetical  l amina r  sub layer  with some 
degree  of eddying motion which does not decay to ze ro  until the solid su r face  is reached.  Thus Eq. (22) a l -  
lows full turbulence beyond the l aminar  sub layer  [y+ > (y~ = 5n)], whereas  Eq. (40) allows only reduced 

+ turbulence in the buffer  l ayer  (5 n < y+ < Y2 ). Equation (30), although allowing full turbulence beyond the 
l amina r  sublayer ,  never the less  requ i res  a l amina r  sublayer  more  than twice as thick as e i ther  of the other  
two models .  This may be seen f r o m  considera t ion of the definitions of y+. N~e, and u*, which shows that 

2--n 
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TAB LE 2. 
Corresponding to Equations (22), (30), and (40) 

Compar i son  between Laminar  Sublayer  Thicknesses  (y~) 

5,145 

3,25 

7,1 

9,340 I2,070 

3,07 1 3,17 

6,37 I 6,7 

14,770 

3,31 

7,34 

CnRe + 

y~ corresponding to 
Eqs. (22) and (40) 

y~ correspondin$ to 
Eq. (30) 

23,000 

3,55 

8,0 

in the case  of the a l te rnat ive  analogy leading to Eq. (30), D/5 L is obtained f r o m  Eqs. (27) and (29). 
Dimensionless  th icknesses  of the l amina r  sublayer  y~,  calculated f r o m  Eq. (41) and cor responding  to Eq. 
(30), and f r o m  y~  = 5 n cor responding  to Eqs. (22) and (40), are  compared  in Table 2. 

Table  1, then, shows improvemen t  in predict ion with increas ing  allowance for turbulence near  the 
wail.  If, however,  we assume  full turbulence r ight  up to the solid su r face ,  Eq. (17) is wri t ten with (Tw, 
0) in place  of (TL, UL) to give NSt = f/2. This,  unfortunately,  yields NNu values between 8 and 16 t imes  
higher  than the exper imenta l  r e su l t s  in Table 1. 

Fu r the r  information on this p rob lem is provided by Fig. 2, where  Eqs. (37), (38), and (39) have been 
used to plot the radia l  t e m p e r a t u r e  distr ibution in d imens ionless  f o r m  as (T w - T)/(T w - Tc) v e r s u s  y / i l  
with N~r  as p a r a m e t e r .  The plots a r e  for  N~e = 10,000, ~2' = 1.0, and n = 1/2 and were  obtained af ter  
utilizing the following re la t ionships  

F igure  2 shows that, as the non-Ncwtontan Prandt l  number  inc reases ,  the t empe ra tu r e  profi le  be -  
comes  f la t t e r  in the turbulent co re  and s t eepe r  nea r  the wall,  until the la t te r  region exer t s  the dominant 
~nfluence on heat t r ans fe r ,  in accordance  with the conclusions reached e a r l i e r ,  below Eq. (13). 

All of these considera t ions  underline the impor tance  of assumpt ions  about the wall region when N~r  
is high. It s e e m s  l ikely that the level of agreement  obtained with the s imples t  re la t ionship (Eq. 22) is 

+ 
m e r e l y  for tui tous,  so that adjus tment  of YL f r o m  5 n to a somewhat  lower value, in o rde r  to obtain a c lo se r  
fit to the data, would be i l lusory.  Genuine improvement  must  await c lar i f ica t ion  of flow in the wall  region, 
pe rhaps  using l a s e r  techniques.  

C n 
Cp 
D 
f 

gc 
h 
K 
k 
m 
n 
NNu 
N~r  
Nil e 
Nst 
% 
q' qw 
R 
r 
T 

NOTATION 

ts defined by Eq. 23, d imensionless ;  
ts the specif ic  heat, B T U / l b ' ~  
Ls the tube d iamete r ,  ft; 
LS the fr ic t ion fac tor  (Eq. 12), d imensionless ;  
ts the convers ion  factor ,  32.174 lb m a s s "  f t / lb  force  �9 sec2; 
ts the coefficient  of heat t r ans fe r ,  BTU/h �9 ft 2" ~ 
ts the fluid consis tency index, lb m a s s .  sec n-2. ft-~; 
ts the the rma l  conductivity, BTU/sec �9 ft 2. ~ or  B T U / h .  ft 2. ~ 
ts the mass ,  lb mass ;  
ts the flow behavior  index, d imensionless ;  
ts the Nussel t  number ,  h D/k,  d imensionless ;  
Ls a Prandt l  number  defined by Eqs.  (3-4), d imensionless ;  
Ls a Reynolds number  defined by Eqs. (3-4), d imensionless ;  
Ls the Stanton number  + + = NNu/NReNpr ,  d imensionless ;  
LS defined below Eq. 39; 
a re  heat flux and heat flux at the wall  respec t ive ly ,  B T U / h .  ft2; 
is the tube radius ,  ft; 
is the radia l  distance,  ft; 
is the t empera tu re ,  ~ 
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T + , T  e , T  L, T m, T w, T9 

u, u § u L, Um 

U* 

V 
X 
y, y+, 

P 
71 
6L 
ell, ~M 
P 
Tw 
Trx 

a re  dimensionless  t empera tu re  (Eq. (7)), center l ine  tempera ture ,  t em-  
pera ture  at y = 6 L, bulk average tempera ture ,  wall t empera ture ,  and 
T at y~ respect ively ,  ~ 

are  local velocity,  u/u*, veloci ty at y = 6L, maximum or center l ine  vel -  
oci ty ,  all in the x direction,  ft/sec; 

is the fr ict ion velocity,  ~ f t /sec or  ft/h; 
is the mean velocity in the x direct ion,  ft/sec; 
is the distance in the direct ion of flow, ft; 
a re  distance normal  to surface ,  also y = R - r,  ft, defined by Eq. (8), 

y+ at y = 6L, y+ at intersect ion of Eqs. (35) and (36), (y+ = dimen- 
s [onless); 

is the constant in Eq. (12), dimensionless;  
is the thermal  dtffusiVity, k/pcp, ft2/h; 
is the constant in Eq. (12), dimensionless;  
is K/Cn; 
is the thickness of laminar  sublayer ,  ft; 
a re  eddy thermal  and momentum diffusivittes,  ft2/hr; 
is the density, lb mass/ft3; 
is the shear  s t r e s s  at a conduit wall, lb force/ft2; 
is the shea r  s t r e s s  in x direct ion on surface  normal  to r, lb force/ft2; 
is eH/e M. 
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